

POMME One Bottom Datasheet

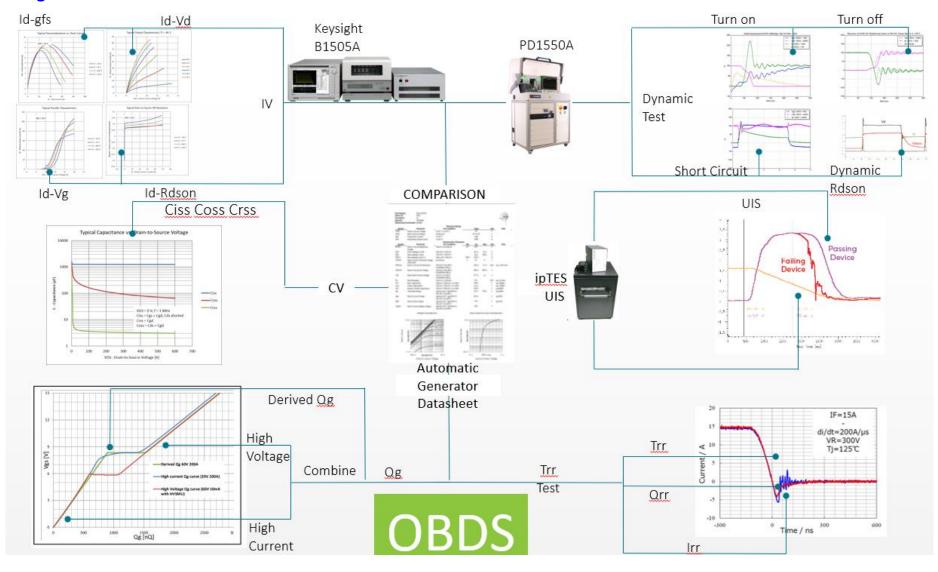
TF-WBG-OBDS software datasheet

Keysight

Datasheet

Parameter	Symbol	Conditions	Values			Unit	Note
Parameter		Conditions -	Min.	Тур.	Max.	Unit	Note
Drain-Source Breakdown Voltage	VDSS	$V_{GS} = 0 \text{ V, } I_D = 100 \mu\text{A}$	3300		٧		
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 3300 V, V _{GS} = 0 V		10		μA	
Gate Source Leakage Current	loss	$V_{DS} = 0 \text{ V, } V_{GS} = 25 \text{ V}$			100	nA	
,		V _{DS} = 0 V, V _{GS} = -10 V			-100		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS_v} I_D = 10.0 \text{ mA}$	2.0 3.50 2.40			v	Fig. 9
		V _{DS} = V _{GS} , I _D = 10.0 mA, T _j = 150°C					119.5
Transconductance	Qfs	Vos = 10 V, lo = 40 A	15.3			s	Fig. 4
	, -	V _{DS} = 10 V, I _D = 40 A, T _j = 150°C	16.3				
Drain-Source On-State Resistance	Rosione	V _{GS} = 20 V, I _D = 40 A	50			mΩ	Fig. 5-8
		Vgs = 20 V, Ib = 40 A, Tj = 150°C	91				
Input Capacitance	Ciss			7302			Fig. 11
Output Capacitance	Coss			131		pF	
Reverse Transfer Capacitance	Cras			12.3			
Coss Stored Energy	Eoss	- Vns = 1000 V. Vns = 0 V		85		μJ	Fig. 12
Coss Stored Charge	Qoss	f = 1 MHz, V _{AC} = 25mV		255		nC	
Effective Output Capacitance (Energy Related)	$C_{o(er)}$			170 255		pF	Note 2
Effective Output Capacitance (Time Related)	Co(tr)						
Gate-Source Charge	Qgs	V _{DS} = 1000 V, V _{GS} = -5 / +20 V	120		nC	Fig. 10	
Gate-Drain Charge 0		I _D = 40 A		100			
Total Gate Charge	Qq	Per IEC607478-4		340			
Internal Gate Resistance	R _{G(int)}	f = 1 MHz, V _{AC} = 25 mV		1.2		Ω	
Turn-On Switching Energy (Body Diode)	E _{0n}	Ti = 25°C, Vos = -5/+20V, Releat = 3 Ω, L =	1222				
Turn-Off Switching Energy (Body Diode)	Eoff	60.0 μH, I _D = 50 A, V _{DD} = 1700 V		533		μЈ	Fig. 22,26
Turn-On Delay Time	t _{d(on)}			74			Fig. 24
Rise Time	tr	V ₀₀ = 1700 V, V _{GS} = -5/+20V		36			
Turn-Off Delay Time	t _{d(off)}	 R_{G(ext)} = 3 Ω, L = 60.0 µH, I_D = 50 A Timing relative to V_{DS}, Inductive load 		32		ns	
Fall Time	tr	— Tilling relative to VDS, inductive load -		18			

Note 1: Pulse Width t_P Limited by T_{J(max)}


Note 2: $C_{O(n)}$, a lumped capacitance that gives same stored energy as C_{OSS} while V_{DS} is rising from 0 to 1000V. $C_{O(n)}$, a lumped capacitance that gives same charging times as C_{OSS} while V_{DS} is rising from 0 to 1000V.

1. Application

- Ducking to static Keysight B1505A and B1506A.
- Ducking to dynamic Keysight PD1500A and PD1550A.
- Ducking to ipTEST DC/AC testing station.
- Easy transfer from DC/AC characterization equipment raw data to datasheet.

2. Software figure

3. Available Test Item

	Power Device		Package	DC characterization	CV characterization	AC characterization	Ruggedeness	Temp
Engineering support (Characterization)	Silicon	Diode	Discrete, Module ¹⁾	VR,IR,VF	C, Total capacitance	Cj,Reverse recovery	UIS, Diode dv/dt	
		MOSFET		BV,lds,Rds(on),lgs,Vth,Vsd	Cgd, Cgs, Cds, Ciss, Coss,	Swiching time, Reverse	UIS, MOSFET&Diode]
					Crss	recovery of body diode, Qg dv/dt		
		IGBT		BV,Ice,Vce(sat),Ige,Vth,VF	Cies, Coes, Cres, Cgc, Cge, Cce	Switching loss, Swiching		-55c ~ - 200°C
						time, Reverse recovery of	SCWT, Latch testing	
						co-pack diode, Qg		
	Silicon carbide	Diode		VR,IR,VF	C, Total capacitance	Cj,Qc,Ec	UIS, Diode dv/dt	
		MOSFET		BV,Ids,Rds(on),Igs,Vth,Vsd	Cgd, Cgs, Cds, Ciss, Coss,	Swiching time, Reverse	UIS, MOSFET&Diode	
					Crss	recovery of body diode	dv/dt, SCWT	
	Gallium	HEMT		BV,lds,Rds(on),lgs,Vth	Cgd, Cgs, Cds, Ciss, Coss,	Swiching time, Switching	Dynamic Ron	
	Nitride	I ILIVI I			Crss	loss, Qg	Dynamic Non	

¹⁾ Depending on the module circuit, need to use each fixtures for testing (Pomme can handle it however, should discuss it in advance)

²⁾ Each equipment should consider how to configure handler, especially ac characteristic should be careful to design handler as minimize parasitic components