

M2 combined HV 3kV / LV 200A test generator

.

The M2 HV3kV / LV200A test generator is one of the Mostrak-2 (M2) family of test generators from ipTEST. It performs high voltage off-state tests and low voltage onstate and active region tests on power semiconductor devices such as MOS, IGBT and fast GaN and SiC.

The generator has a unipolar 3kV source which may be switched to the appropriate device terminals for HV tests with a floating ± 25 V Vx generator and a bipolar ± 50 V 200A output to the Drain/Collector terminal with a ± 50 V 20A Gate/Base output for LV tests. Thermal die attach tests to 50V/20A for up to 25ms are also included.

Programmable digital servos loops allow fast settling for each test and user control over the device under test stability.

FEATURES

3kV, 200A high speed static test generator for packaged devices, bare die or wafer test

High throughput with fast settling

0.1% voltage and current measure accuracy with force condition datalogging

Digital control loops for fast test settling

Waveform capture for rapid test-plan development and debugging

Low board count for high reliability and low spares inventory

Modular, expandable architecture for higher LV currents

Compact dimensions allow the generator to be mounted on a handler or prober table

HV generator specifications

Voltage measure

The voltage measurement uses a 16bit ADC sampled at up to $1\mu s$ with a 125% over-range measurement capability.

Load (Drain/Collector) & Drive (Gate/Base) Voltage measure specification					
RangeUnitResolutionUnitAccuracy[
3	kV	114.4	mV	0.1%	
1	kV	38.15	mV	0.1%	
300	V	11.44	mV	0.1%	
100	V	3.815	mV	0.1%	
30	V	1.144	mV	0.1%	
10	V	381.5	μV	0.1%	
3	V	114.4	μV	0.1%	
1	V	38.15	μV	0.1%	
300	mV	11.44	μV	0.1%	
100	mV	3.815	μV	0.1%	
30	mV	1.144	μV	0.1%	

Note 1: Voltage measure accuracy as $\pm\%$ of value from 10% to 120% of range subject to $\pm0.01\%$ of range, $\pm100\mu$ V and $\pm0.005\%$ of common mode voltage (CMV), using averaging.

Current measure

The current measurement uses a 16bit ADC sampled at up to $1\mu s$ with a 125% over-range measurement capability.

Current measure specification					
Range	Unit Resolution Unit Accuracy				
100	mA	3.815	μA	0.1%	
10	mA	381.5	nA	0.1%	
1	mA	11.44	nA	0.1%	
100	μΑ	3.815	nA	0.1%	

10	μA	1.144	nA	0.5%
1	μA	381.5	pА	0.1%
100	nA	3.815	pА	1.0%

Note 2: Current measure accuracy as $\pm\%$ of value from 10% to 120% of range subject to $\pm0.01\%$ of range, $\pm1nA$, using averaging.

Vx Voltage measure

The Vx voltage measure has 20V compliance and a 25V range and uses 16 bit forcing DACs and 12 bit serial ADCs sampling up to 18μ s.

Vx Voltage measure specification				
RangeUnitResolutionUnitAccuracy ^[3]				Accuracy ^[3]
25*	V	12.21	mV	0.25%

Note 3: Voltage measure accuracy measured into a high impedance load as $\pm\%$ of range from 10% to 120% of range, \pm 1nA, using averaging.

Vx Current measure

The Vx current measurement uses a 12bit serial ADC sampled at up to 18μ s with a 125% over-range measurement capability.

Vx current measure specification					
Range	inge Unit Resolution Unit Accuracy ^[4]				
1	mA	610.4	nA	0.3%	
100	μA	61.04	nA	0.3%	
10	μA	6.104	nA	0.3%	
1	μA	610.4	pА	0.3%	
100	nA	61.04	pА	1.0%	

Note 4: Current measure accuracy as ±% of range from 10% to 120% of range, ±1nA, using averaging.

LV generator specifications

Voltage measure

The voltage measurement uses a 16bit ADC sampled at up to $1\mu s$ with a 125% over-range measurement capability.

.

Load (Drain/Collector) & Drive (Gate/Base)				
Range	Unit	Resolution	Unit	Accuracy [Note 1]
3	kV	114.4	mV	0.1%
1	kV	38.15	mV	0.1%
300	V	11.44	mV	0.1%
100	V	3.815	mV	0.1%
30	V	1.144	mV	0.1%
10	V	381.5	μV	0.1%
3	V	114.4	μV	0.1%
1	V	38.15	μV	0.1%
300	mV	11.44	μV	0.1%
100	mV	3.815	μV	0.1%
30	mV	1.144	μV	0.1%

Note 1: voltage measure accuracy 0.1% of value from 10% to 120% of range subject to $\pm 100 \mu$ V and $\pm 0.005\%$ of common mode voltage (CMV), using averaging.

Current measure

The current measurement uses a 16 bit ADC sampled at up to $1\mu s$ with a 125% over-range measurement capability.

Load (Drain/Collector) current measure specification					
Range	Unit	Resolution	Unit	Accuracy [Note 2]	
1000	А	38.15	mA	0.1%	
300	А	11.44	mA	0.1%	
100	A	3.815	mA	0.1%	
10	А	381.5	μA	0.1%	
1	А	38.15	μΑ	0.1%	

100	mA	3.815	μΑ	0.1%
10	mA	381.5	nA	0.1%
1	mA	38.15	nA	0.1%
100	μΑ	3.815	nA	0.1%
10	μΑ	381.5	pА	0.1%
1	μA	38.15	pА	0.1%
100	nA	3.815	pА	1.0%

.

Drive (Gate/Base) current measure specification					
Range	Unit	Resolution	Unit	Accuracy [Note 2]	
10	A	381.5	μA	0.1%	
1	A	38.15	μA	0.1%	
100	mA	3.815	μA	0.1%	
10	mA	381.5	nA	0.1%	
1	mA	38.15	nA	0.1%	
100	μA	3.815	nA	0.1%	
10	μA	381.5	pА	0.1%	
1	μA	38.15	pА	0.1%	
100	nA	3.815	pА	1.0%	

Note 2: current measure accuracy 0.1% of value from 10% to 120% of range subject to \pm 0.01% of range, \pm 1nA, using averaging.

Kelvin resistance measure

The Kelvin test forces 20mA and measures the series voltage to determine the Kelvin resistance between power and sense contacts. Any internal tester resistance may be nulled using an external calibration process. The Kelvin test includes a built-in self-check.

Current force	Unit	Resolution	Unit	Accuracy ^[5]
20 (fixed value)	mA	-	-	1%
Resistance measure range	Unit	Resolution	Unit	Accuracy
30	Ohms	7.32	mV	1%

Note 5: Excluding internal resistance.

Generator dimensions

.

PSU dimensions

The power supply cable from the Mostrak system cabinet to the M2 test head is 5m.

M2	ΗV	test	generator	test	modes
----	----	------	-----------	------	-------

Setup and Kel	vin tests
KELVIN	Executable Kelvin PASS/FAIL test mode
RKELVN	Recalls the Kelvin resistance per pin
MCHECK	Compensates for internal and cable resistance.
MATRIX	Sets the matrix connections
RRELAY	Sets remote relays
CALCULATE	Calculation.
DELAY	Adds the specified delay before the next tests - a setup test mode.
WAIT	Adds the specified delay between tests - an executable test mode
SET_B	Set buffer - set up mode for setting a high impedance measurement buffer for the next test maximum 25V compliance including common mode voltage.
SET_T1	Set timer states 1 - set up mode for setting the state timers 0-7 for the next test.
SET_T2	Set timer states 2 - set up mode for setting the state timers 8-15 for the next test.
DataIO	Reads from or writes to the 8 bit external data and address bus (control card front panel).
MOSFET devic	e tests
BVDSO	\mathbf{BV}_{DSO} or $\mathbf{V}_{(BR)DSO}$ - Drain-Source breakdown voltage, Gate open-circuit.
BVDSS	\mathbf{BV}_{DSS} or $\mathbf{V}_{(BR)DSS}$ - Drain-Source breakdown voltage, Gate-Source short-circuit.
BVDSX	BV _{DSX} or V _{(BR)DSX} - Drain-Source breakdown voltage, with a floating reverse biased voltage applied between Gate and Source.
BVDGO	\mathbf{BV}_{DGO} or $\mathbf{V}_{(BR)DGO}$ - Drain-gate breakdown voltage, with the Source open-circuit.
BVGSO	\mathbf{BV}_{GSO} or $\mathbf{V}_{(BR)GSO}$ - Gate-Source breakdown voltage, Gate open-circuit.
BVGSS	BV _{GSS} or V _{(BR)GSS} - Gate-Source breakdown voltage, Gate short-circuit.
IDSO	I _{DSO} - Zero Gate voltage Drain current, Gate open-circuit.
IDSS	IDSS - Zero Gate voltage Drain current, Gate short-circuit.
IDSX	I _{DSX} - Zero Gate voltage Drain current, floating reverse biased voltage applied between Gate and Source.
IDSG	I _{DSG} - Drain-Source leakage current, floating reverse biased voltage applied between Gate and Source Gate current measure range programmable.
IDGO	I _{DGO} - Drain-Gate leakage current, Source open-circuit.
IGSO	I _{GSO} - Gate-source leakage current, Drain open-circuit.
IGSS	I _{GSS} - Gate-source leakage current, Drain-Source short-circuit.
VGS ON	V _{GSON} - Gate on-state voltage.

••

•

Bi-polar transistor device tests		
BVCBO	BV _{CBO} or V _{(BR)CBO} - Collector-Base breakdown voltage, Emitter open-circuit.	
BVEBO	\mathbf{BV}_{EBO} or $\mathbf{V}_{(BR)EBO}$ - Emitter-Base breakdown voltage, Collector open-circuit.	
BVCEO	\mathbf{BV}_{CEO} or $\mathbf{V}_{(BR)CEO}$ - Collector-Emitter breakdown voltage, Base open-circuit.	
BVCES	\mathbf{BV}_{CES} or $\mathbf{V}_{(BR)CES}$ - Collector-Emitter breakdown voltage, Base-Emitter short-circuit.	
BVCEX	BV_{CEX} or $V_{(BR)CEX}$ - Collector-Emitter breakdown voltage, floating reverse biased voltage applied between Base-Emitter.	
ICBO	I _{сво} - Collector-Base leakage current, Emitter open-circuit.	
IEBO	I _{EBO} - Emitter-Base leakage current, Collector open-circuit.	
ICEO	Iceo - Collector-Emitter leakage current, Base open-circuit.	
ICES	Ices - Collector-Emitter leakage current, Base-Emitter Short-circuit.	
IGBT device tests		
BVCEO	\mathbf{BV}_{CEO} or $\mathbf{V}_{(BR)CEO}$ - Collector-Emitter breakdown voltage, Gate open-circuit.	
BVCES	\mathbf{BV}_{CES} or $\mathbf{V}_{(BR)CES}$ - Collector-Emitter breakdown voltage, Gate-Emitter short-circuit.	
BVCEX	\mathbf{BV}_{CEX} or $\mathbf{V}_{(BR)CEX}$ - Collector-Emitter breakdown voltage, floating reverse biased voltage applied between Gate-Emitter.	
IGES	IGES - Gate-Emitter leakage current, Collector-Emitter short-circuit.	
Diode device tests		
BVR	BV _R - Reverse breakdown voltage.	
IR	I _R - Reverse leakage current.	
Recall tests		
DRIVEI	Recall the Vx current measurement stored for the preceding test mode.	
DRIVEV	Recall the Vx voltage measurement stored for the preceding test mode.	
LOADI	Recall the load current measurement stored for the preceding test mode.	
LOADV	Recall the load voltage measurement stored for the preceding test mode.	
R_TIME	Recall the state times for the preceding test mode.	
CODE_r	Returns the number representing the non-numeric result of the previous test.	
Miscellaneous test modes		
SERVOD	Controls the digital servo compensation for the next test.	

.

......

••

•

	-	
Setup and Kelvin tests		
KELVIN	Executable Kelvin PASS/FAIL test mode	
<u>RKELVN</u>	Recalls the Kelvin resistance per pin	
MCHECK	Compensates for internal and cable resistance.	
MATRIX	Sets the matrix connections	
<u>RRELAY</u>	Sets remote relays	
<u>CALCULATE</u>	Calculation.	
<u>DELAY</u>	Adds the specified delay before the next tests - a setup test mode.	
WAIT	Adds the specified delay between tests - an executable test mode	
<u>SET_B</u>	Set buffer - set up mode for setting a high impedance measurement buffer for the next test	
SFT T1	Set timer states 1 - set up mode for setting the state timers 0-7 for the pext test	
SET T2	Set timer states 2 - set up mode for setting the state timers 8-15 for the next test.	
DatalO	Reads from or writes to the 8 bit external data and address bus (control card front panel).	
MOSFET dev	ice tests	
<u>dVSD</u>	Measures the difference in VDS before and after a power pulse.	
<u>GFS</u>	g _{fs} - forward transconductance.	
ID ON	I _{D(on)} - On-state Drain-Source current.	
RDS ON	R _{DS(on)} - On-state Drain-Source resistance.	
VDS ON	V _{DS(on)} - On-state Drain saturation voltage.	
VGS ON	V _{GS(on)} - On-state Gate saturation voltage.	
<u>VTH</u>	V _{(GS)th} - Gate threshold voltage.	
<u>VSD</u>	V_{SD} - Source-Drain voltage (on-state of body Drain diode).	
Bi-polar transistor device tests		
<u>dVBE</u>	Measures the difference in V_{BE} before and after a power pulse.	
<u>hfe</u>	h _{fe} - DC current gain.	
<u>ICon</u>	I _{Con} - On-state collector current.	
<u>VBE</u>	V _{BE} - Base-emitter voltage - collector open.	
VBEON	V _{BE(on)} - Base-emitter on-state voltage.	
VBESAT	V _{BE(sat)} - Base-emitter saturation voltage.	
VCESAT	V _{CE(sat)} - Collector-emitter saturation voltage.	

M2 LV test generator test modes

•

IGBT device tests		
<u>dVCE</u>	Measures the difference in $V_{CE(sat)}$ before and after a power pulse.	
<u>GFS</u>	g _{fs} - forward transconductance.	
<u>ICon</u>	I _{c(on)} - On-state Collector current.	
VCES	V _{CE(sat)} - On-state Collector-Emitter saturation voltage.	
VGS ON	V _{GE(on)} - On-state Gate voltage.	
<u>VGETH</u>	V _{(GE)th} - Gate threshold voltage.	
<u>VFT</u>	V _{FT} - Emitter-Collector voltage (of anti-parallel diode).	
Diode device tests		
<u>dVF</u>	Measures the difference in V_F before and after a power pulse.	
<u>VF</u>	V _F - Diode forward voltage.	
<u>IR</u>	I _R - Reverse leakage current.	
Recall tests		
DRIVEI	Recall the Drive current measurement stored for the preceding test mode.	
DRIVEV	Recall the Drive voltage measurement stored for the preceding test mode.	
LOADI	Recall the load current measurement stored for the preceding test mode.	
LOADV	Recall the load voltage measurement stored for the preceding test mode.	
<u>R_TIME</u>	Recall the state times for the preceding test mode.	
<u>CODE_r</u>	Returns the number representing the non-numeric result of the previous test.	
Miscellaneous test modes		
<u>SERVOD</u>	Controls the digital servo compensation for the next test.	
MODTST	Modify test - affects the low level operation of the preceding test. Mainly used for de-	
	bug	
	by trained ipTEST engineers.	
VMREAD	Diagnostic mode which is used to verify the accuracy of the M2 voltage measure circuit	
	by measuring an external voltage.	

. . .

ipTEST Limited

40 Alan Turing Way Surrey Research Park, Guildford, GU2 7YF. United Kingdom

www.iptest.com sales@iptest.com

Page 10 of 10